Statistik und Datenanalyse: Aufbau Übung 1 – 4. Sitzung

Benjamin Fretwurst

11

► PDF-Version der Folien

Fretwurst | Statistik Aufbau: GLM – BLUE

Inhalt

- Übung 1 a+b
- Take Home Ausblick Vokabeln

Orga

Orga

• Es gibt neue Studienteilnahmestudien!

Fretwurst | Statistik Aufbau: GLM – BLUE

Lernziele

Grundprinzipien der Regression

- Sinn und Zweck von Quarto
- Einübung Regressionsanalyse
- Übung zur Berechnung von b_2 , um zu verstehen, wie die Zusammenhänge bivariat angelegt sind und die übrigen Dritteinflüsse "herausgerechnet" werden
- Vor- und Nachteile der visuellen Residualanalyse vs. Tests

Übung 1 a+b

Ü1.1 Erstellen Sie eine Quarto-Datei.qmd

- 1. Öffnen Sie R-Studio
- 2. In R-Studio ➡ File ➡ New File ➡ Quarto Document...
- 3. Klicken Sie unten links auf «Create Empty Document»
- 4. (Wählen Sie als title «Erste Regression»)
- 5. Fügen Sie einen r-Chunk hinzu mit diesem Schalter: 🐿
- 6. speichern Sie an einem günstigen Ort (am besten in der Cloud + nicht auf Desktop)

Ü1.2 Installation und Setup

Die R-Befehle für die Installation von Paketen haben wir in die Datei "Installation.R" ausgelagert, weil man sie im Grunde jeweils nur einmal braucht. Ich habe Ihnen hier eine Installationsdatei gebaut, mit der Sie die Pakete mit höhrer Erfolgschance installieren können. Mit folgendem Befehl wird diese Datei automatisch von unserer Homepage heruntergeladen und im Unterordner "files" des Projekts gespeichert. Sie können Sie dann dort öffnen und (am besten Zeilenweise) ausführen, wenn Sie die Pakete noch nicht installiert haben.

1 # Prüfe, ob es in dem Ordner in der die Uebung_1_ab.qmd gespeichert ist, ein
2 if(dir.exists("files")){} else {dir.create("files")}

NULL

1 # Lade die Installations.R herunter und speichere sie im Unterordner des Pre

2 download.file("https://stat.ikmz.uzh.ch/Aufbau/Folien/Sitzung_04/files/Instructures/Fretwurst|Statistik Aufbau: GLM - BLUE

Für generelle Grundeinstellungen haben wir eine "_common.R" angelegt, in der wir den Aufruf der Basispakete des tidyverse geschrieben haben und andere Optionen und Einstellungen für Designs (wie Farben). Die Datei kann man dann immer am Anfang seiner Quarto-Dateien aufrufen und braucht diese Generaleinstellungen nicht immer wieder neu kopieren. Das ist doch praktisch.

1 # Prüfe, ob es in dem Ordner in der die Uebung_1_ab.qmd gespeichert ist, ein
2 if(dir.exists("files")){} else {dir.create("files")}

NULL

```
1 download.file("https://stat.ikmz.uzh.ch/Aufbau/Folien/Sitzung_04/files/_com
2
2
```

```
3 source("files/_common.R")
```


Ü1.3 Laden Sie die Daten

Laden Sie den Fragebogen hier runter und schauen ihn an.

Laden Sie die Daten und lassen Sie mal die Variablenlabel raus:

► R-Code anzeigen

Ü1.4 Rechnen Sie ein Regressionsmodell

```
DATEN <- DATEN |> haven::zap formats()
 1
 2
   Modell 1 <- lm(E201 \ 10 \ \sim E102 \ 02, \ data = DATEN)
 4
   summary(Modell 1)
 5
 6 ##
 7 ## Call:
 8 ## lm(formula = E201 10 ~ E102 02, data = DATEN
 9
   ##
10 ## Residuals:
11 ## Min
                  10 Median 30
                                       Max
12 ## -1.2726 -0.7684 -0.2641 0.7274 2.7274
13 ##
14 ## Coefficients:
15 ## Estimate Std. Error t value Pr(>
16 ## (Intercept) 1.28105 0.16912 7.575 2.60
17 ## E102 02 0.49578 0.06668 7.435 5.73
```

Was sehen Sie?

- 1. Wie gross ist R^2 ?
- Wie gross ist die bivariate Korrelation
 r? (selbst ausrechnen)
- 3. Ist der Zusammenhang positiv oder negativ?
- 4. Ist der Zusammenhang signifikant?

Ü1.5 Verändern Sie das Regressionsmodell

Kopieren Sie den r-Chunk der letzten Folie und setzen Sie andere Variablen ein: Nehmen Sie die Variablen für «Statistik Einführung hat mir viel Spass gemacht» und erklären Sie damit: «Ich freu mich auf Statistik Aufbau!».

Beantworten wieder die Fragen:

- 1. Wie gross ist R^2 ?
- 2. Wie gross ist die bivariate Korrelation r? (selbst ausrechnen)
- 3. Ist der Zusammenhang positiv oder negativ?
- 4. Ist der Zusammenhang signifikant?

Ü1.6 b_2 aus Korrelationen und SDs berechnen

Note

Lassen Sie die Korrelationen durchlaufen, schauen Sie sich an, wo was steht und setzen Sie es in die Formel für $b_2 = rac{r_{Y2} - r_{23}r_{Y3}}{(1 - R_{2.3}^2)} rac{s_Y}{s_2}$, um es zu berechnen.

Also:
$$b_2 = rac{.50 - (-.32 \cdot -.23)}{(1 - .32^2)} rac{1.05}{1.07}$$

► R-Code anzeigen

Man kann natürlich auch R nutzen

► R-Code anzeigen

Ü1.7 Berechnen Sie b_2 mit Hilfe einer Regressionsanalyse

```
1 Modell1 <- lm(E201 10 \sim E102 02 + E102 04, data = DATEN)
 2
 3 Modell 1 beta <- lm.beta::lm.beta(Modell1)</pre>
 4
 5 summary(Modell 1 beta, digits = digits, maxsum = maxsum)
 6 ##
 7 ## Call:
 8 ## lm(formula = E201 10 ~ E102 02 + E102 04, data = DATEN)
 9 ##
10 ## Residuals:
11 ## Min 10 Median 30 Max
12 ## -1.3852 -0.7194 -0.2281 0.5642 2.7439
13 ##
14 ## Coefficients:
15 ## Estimate Standardized Std. Error t value Pr(>|t|)
16 ## (Intercept) 1.57016 NA 0.32129 4.887 2.46e-06 ***
17 ## E102 02 0.47210 0.48031 0.07031 6.714 3.08e-10 ***
```


Ü1.8 Geben Sie mit folgendem Befehl die Tolerance und VIF-Werte raus

1 olsrr::ols_regress(Modell1) 2 ## 3 ## 4 ## R 6 ## R 0.509 RMSE 0.915 5 ## R-Squared 0.260 Coef. Var 37.790 6 ## Adj. R-Squared 0.250 MSE 0.837 7 ## Pred R-Squared 0.235 MAE 0.736 8 ##									
2 ## Model Summary 3 ##	1	ol	<pre>srr::ols_regress(Modell1)</pre>)					
3 ##	2	##		Model	Summa	ry			
4 ## R 0.509 RMSE 0.915 5 ## R-Squared 0.260 Coef. Var 37.790 6 ## Adj. R-Squared 0.250 MSE 0.837 7 ## Pred R-Squared 0.235 MAE 0.736 8 ##	3	##							
5 ## R-Squared 0.260 Coef. Var 37.790 6 ## Adj. R-Squared 0.250 MSE 0.837 7 ## Pred R-Squared 0.235 MAE 0.736 8 ##	4	##	R	0.509		RMSE		0.915	
6 ## Adj. R-Squared 0.250 MSE 0.837 7 ## Pred R-Squared 0.235 MAE 0.736 8 ##	5	##	<i>R-Squared</i>	0.260		Coef.	Var	37.790	
7 ## Pred R-Squared 0.235 MAE 0.736 8 ##	6	##	Adj. R-Squared	0.250		MSE		0.837	
8 ##	7	##	Pred R-Squared	0.235		MAE		0.736	
9 ## RMSE: Root Mean Square Error 10 ## MSE: Mean Square Error 11 ## MAE: Mean Absolute Error 12 ## 13 ## ANOVA 14 ##	8	##							
10 ## MSE: Mean Square Error 11 ## MAE: Mean Absolute Error 12 ## 13 ## ANOVA 14 ## Sum of 15 ## Squares DF Mean Square F Sig. 17 ##	9	##	RMSE: Root Mean Square	Error					
11 ## MAE: Mean Absolute Error 12 ## 13 ## 14 ## 15 ## 16 ## 17 ##	10	##	MSE: Mean Square Error						
12 ## 13 ## 14 ## 14 ## 15 ## 16 ## 17 ##	11	##	MAE: Mean Absolute Erro	or					
13 ## ANOVA 14 ##	12	##							
14 ##	13	##			ANOVA	P			
15 ## Sum of 16 ## Squares DF Mean Square F Sig. 17 ##	14	##							
16 ## Squares DF Mean Square F Sig. 17 ##	15	##	Sum of						
17 ##	16	##	Squares		DF	Mean	Square	F	Sig.
	17	##							

Ü1.9 Schauen Sie sich die Residualplotts an

R-Code anzeigen

Residual vs Fitted Values

Ü1.10 Testen Sie auf Homoskedastizität

R-Code anzeigen

Was sagt Ihnen das?

Ü1.11 Gucken Sie sich den N-Q-Q-Plot an

R-Code anzeigen

Normal Q-Q Plot

Normal-Q-Q-Plot

Fretwurst | Statistik Aufbau: GLM – BLUE

Ü1.12 Und das Histogramm

R-Code anzeigen

Residual Histogram

Histogramm der Residuen

19

Ü1.13 Jetzt auf Normalverteilung testen

1	# Führe Tests auf signif	ikante Verletzun	igen
2	# der Normalverteilungsa	innahme aus.	
3			
4	<pre>olsrr::ols_test_normalit</pre>	y(Modell1)	
5	##		
6	## Test	Statistic	pvalue
7	##		
8	<i>## Shapiro-Wilk</i>	0.9349	0.0000
9	<i>## Kolmogorov-Smirnov</i>	0.127	0.0101
10	<i>## Cramer-von Mises</i>	15.381	0.0000
11	<i>##</i> Anderson-Darling	3.2969	0.0000
12	##		

Was ist Ihr Fazit aus der Regressionsrechnung?

Weiterführung

Predictors	В	BETA	std.err	t	р
(Intercept)	1.57		0.32	4.89	<.001
E102_02	0.47	.480	0.07	6.71	<.001
E102_04	-0.06	076	0.06	-1.06	.292
^a R ² = 0.25					
(F = 28, df =					
161, p =					
161),					
R ² adj. = 0.25_					

Take Home – Ausblick – Vokabeln

Fretwurst | Statistik Aufbau: GLM - BLUE

Take Home

Note

- Sie können eine Regressionsanalyse in Quarto berechnen und die Ergebnisse interpretieren
- Ihnen ist klar, was es bedeutet, dass Dritteinflüsse herausgerechnet werden.
- Sie können Residualanalysen anschauen und erkennen, wann es Probleme gibt (mögliche Lösungen kommen später)
- Sie können den notwendigen Code für Regressionsanalysen in Ihre Projekte kopieren und an den richtigen Stellen anpassen.

Wie beschäftigen uns mit kategorialen Variablen in den UVs.

					Search:	
Nr	Sitzung	Inhalt 🔶	Deutsch	•	Englisch 🔶	Erläuterung
All	All	All	All		All	All
46	3	Voraussetzungen	Allgemeine kleinste Quadrate		Generalized Least Squares (GLS)	Schätzmethc OLS ersetzen wenn es Heteroskeda gibt, also die Residuen nic allen stellen (streuen.
43	3	Voraussetzungen	BLUE		BLUE	Akronym für Linear Unbia: Estimator
42	3	Voraussetzungen	Bias		Bias	Grad der Verzerrung

Nr	Sitzung	Inhalt 🔶	Deutsch +	Englisch 🔶	Erläuterung
44	3	Voraussetzungen	Effizienz	efficiency	Die Genauigk eines Schätz also wie star streut.
45	3	Voraussetzungen	Fehlervarianz	error variance	Streuung eine Kennwertes (b's).
47	3	Voraussetzungen	Heteroskedastizität	heteroscedasticity	Die Residuen streuen nicht gleichmässig nach grösser UV. Also häng Streubreite d Residuen mit Grösse einer zusammen.
48	3	Voraussetzungen	Homoskedastizität twurst Statistik Aufbau: GLM – BL	homoscedasticity	Die Residuen streuen

Nr	Sitzung	Inhalt 🔶	Deutsch	•	Englisch +	Erläuterung
						alaiah wa ö a aia
						gieicnmassig
49	3	Voraussetzungen	Modellspezifikation		model specification	Formulierung Modells, also welche UVs f AV wichtig si und wie dere Beziehung gestaltet ist.
50	3	Voraussetzungen	Multikollinearität		multicollinearity	Eine UV häng einer oder mehreren dei übrigen UVs zusammen.
51	3	Voraussetzungen	Toleranz (TOL)	- BI I	tolerance	Die übrige Va die eine Varia noch hat, wei gemeinsame Varianz mit a

53	3	Voraussetzungen	Unterspezifikation	under estimation	anderen UVs rausgerechne wurde. Zu wenige U\ Modell (hat
					verzerrt b's zi Folge).
54	3	Voraussetzungen	Unverzerrtheit	unbiasedness	Eigenschaft (Methode vali Messungen c Kennwerte fü Parameter zu messen.
55	3	Voraussetzungen Fre	Varianzinflationsfaktor (VIF)	variance inflation factor	Der Faktor, ur die Ungenaui (Fehlervarian einer UV steig wenn Multikollinea